Gene Name | HSPB8 |
HF Protein Name | Heat shock protein beta-8 |
HF Function | Anti retroviral factor |
Uniprot ID | Q9UJY1 |
Protein Sequence | View Fasta Sequence |
NCBI Gene ID | 26353 |
Host Factor (HF) Name in Paper | HSPB8 |
Gene synonyms | CRYAC E2IG1 HSP22 |
Ensemble Gene ID | ENSG00000152137 |
Ensemble Transcript | ENST00000281938 |
KEGG ID | Go to KEGG Database |
Gene Ontology ID(s) | GO:0005622, GO:0005634, GO:0005654, GO:0005737, GO:0005829, GO:0042802, GO:1900034, |
MINT ID | Q9UJY1 |
STRING | Click to see interaction map |
GWAS Analysis | Click to see gwas analysis |
OMIM ID | 158590 |
PANTHER ID | PTHR11527 |
PDB ID(s) | N.A., |
pfam ID | PF00011, |
Drug Bank ID | N.A., |
ChEMBL ID | N.A. |
Organism | Homo sapiens (Human) |
Virus Name | Human immunodeficiency virus 2 |
Virus Short Name | HIV2 |
Order | Unassigned |
Virus Family | Retroviridae |
Virus Subfamily | Orthoretrovirinae |
Genus | Lentivirus |
Species | Human immunodeficiency virus 2 |
Host | Vertebrates |
Cell Tropism | CD4+ T cells, macrophages and dendritic cells |
Associated Disease | Acquired immunodeficiency syndrome |
Mode of Transmission | Sexual contact, blood, breast feeding |
VIPR DB link | N.A. |
ICTV DB link | https://talk.ictvonline.org/ictv-reports/ictv_9th_report/reverse-transcribing-dna-and-rna-viruses-2011/w/rt_viruses/161/retroviridae |
Virus Host DB link | http://www.genome.jp/virushostdb/view/?virus_lineage=Retroviridae |
Paper Title | H11/HSPB8 Restricts HIV-2 Vpx to Restore the Anti-Viral Activity of SAMHD1 |
Author's Name | Ayumi Kudoh, Kei Miyakawa, Satoko Matsunaga, Yuki Matsushima, Isao Kosugi, Hirokazu Kimura, Satoshi Hayakawa, Tatsuya Sawasaki and Akihide Ryo |
Journal Name | Frontiers In Microbiology |
Pubmed ID | 27379031 |
Abstract | Virus-host interactions play vital roles in viral replication and virus-induced pathogenesis. Viruses rely entirely upon host cells to reproduce progeny viruses however, host factors positively or negatively regulate virus replication by interacting with viral proteins. The elucidation of virus-host protein interaction not only provides a better understanding of the molecular mechanisms by which host cells combat viral infections, but also facilitates the development of new anti-viral therapeutics. Identification of relevant host factors requires techniques that enable comprehensive characterization of virus-host protein interactions. In this study, we developed a proteomic approach to systematically identify human protein kinases that interact potently with viral proteins. For this purpose, we synthesized 412 full-length human protein kinases using the wheat germ cell-free protein synthesis system, and screened them for their association with a virus protein using the amplified luminescent proximity homogenous assay (AlphaScreen). Using this system, we attempted to discover a robust anti-viral host restriction mechanism targeting virus protein X (Vpx) of HIV-2. The screen identified H11/HSPB8 as a Vpx-binding protein that negatively regulates the stability and function of Vpx. Indeed, overexpression of H11/HSPB8 promoted the degradation of Vpx via the ubiquitin-proteasome pathway and inhibited its interaction with SAMHD1, a host restriction factor responsible for blocking replication of HIV. Conversely, targeted knockdown of H11/HSPB8 in human trophoblast cells, which ordinarily express high levels of this protein, restored the expression and function of Vpx, making the cells highly susceptible to viral replication. These results demonstrate that our proteomic approach represents a powerful tool for revealing virus-host interaction not yet identified by conventional methods. Furthermore, we showed that H11/HSPB8 could be a potential host regulatory factor that may prevent placental infection of HIV-2 during pregnancy. |
Used Model | HEK293 and HEK293T cells |
DOI | 10.3389/fmicb.2016.00883 |