Virus Details


VHFID4954

Pathogen Information

Virus Name Human adenovirus 3
Virus Short Name HAdV-5
Order Unassigned
Virus Family Adenoviridae
Virus Subfamily N.A.
Genus Mastadenovirus
Species Human mastadenovirus C
Host Human, mammals
Cell Tropism Epithelial cells
Associated Disease Very common human infection, estimated to be responsible for between 2% and 5% of all respiratory infections. usually mild respiratory, gastrointestinal and eye infections.
Mode of Transmission Respiratory, fecal-oral
VIPR DB link N.A.
ICTV DB link https://talk.ictvonline.org/ictv-reports/ictv_9th_report/dsdna-viruses-2011/w/dsdna_viruses/93/adenoviridae
Virus Host DB link http://www.genome.jp/virushostdb/view/?virus_lineage=Adenoviridae

Publication Information

Paper Title Control of human adenovirus type 5 gene expression by cellular Daxx/ATRX chromatin-associated complexes
Author's Name Sabrina Schreiner, Carolin Bu rck, Mandy Glass, Peter Groitl, Peter Wimmer, Sarah Kinkley, Andreas Mund, Roger D. Everett and Thomas Dobner
Journal Name Nucleic Acid Research
Pubmed ID 23396441
Abstract Death domain-associated protein (Daxx) cooperates with X-linked alpha-thalassaemia retardation syndrome protein (ATRX), a putative member of the sucrose non-fermentable 2 family of ATP-dependent chromatin-remodelling proteins, acting as the core ATPase subunit in this complex, whereas Daxx is the targeting factor, leading to histone deacetylase recruitment, H3.3 deposition and transcriptional repression of cellular promoters. Despite recent findings on the fundamental importance of chromatin modification in host-cell gene regulation, it remains unclear whether adenovirus type 5 (Ad5) transcription is regulated by cellular chromatin remodelling to allow efficient virus gene expression. Here, we focus on the repressive role of the Daxx/ATRX complex during Ad5 replication, which depends on intact protein-protein interaction, as negative regulation could be relieved with a Daxx mutant that is unable to interact with ATRX. To ensure efficient viral replication, Ad5 E1B-55K protein inhibits Daxx and targets ATRX for proteasomal degradation in cooperation with early region 4 open reading frame protein 6 and cellular components of a cullin-dependent E3-ubiquitin ligase. Our studies illustrate the importance and diversity of viral factors antagonizing Daxx/ATRX-mediated repression of viral gene expression and shed new light on the modulation of cellular chromatin remodelling factors by Ad5. We show for the first time that cellular Daxx/ATRX chromatin remodelling complexes play essential roles in Ad gene expression and illustrate the importance of early viral proteins to counteract cellular chromatin remodelling.
Used Model U2OS, HEK293 and H1299 cells
DOI 10.1093/nar/gkt064