Virus Name | Measles Virus |
Virus Short Name | MeV |
Order | Mononegavirales |
Virus Family | Paramyxoviridae |
Virus Subfamily | N.A. |
Genus | Morbilivirus |
Species | Measles morbillivirus |
Host | Human, dog, cattle |
Cell Tropism | N.A. |
Associated Disease | Fever, rash |
Mode of Transmission | Respiratory |
VIPR DB link | http://www.viprbrc.org/brc/vipr_allSpecies_search.do?method=SubmitForm&decorator=paramyxo |
ICTV DB link | https://talk.ictvonline.org/ictv-reports/ictv_9th_report/negative-sense-rna-viruses-2011/w/negrna_viruses/199/paramyxoviridae |
Virus Host DB link | http://www.genome.jp/virushostdb/view/?virus_lineage=Paramyxoviridae |
Paper Title | The measles virus V protein binds to p65 (RelA) to suppress NF-?B activity |
Author's Name | Kerstin M. Schuhmann, Christian K. Pfaller, and Karl-Klaus Conzelmann |
Journal Name | Journal Of Virology |
Pubmed ID | 21270162 |
Abstract | Nuclear factor κB (NF-κB) transcription factors are involved in controlling numerous cellular processes, including inflammation, innate and adaptive immunity, and cell survival. Here we show that the immunosuppressive measles virus (MV Morbillivirus genus, Paramyxoviridae) has evolved multiple functions to interfere with canonical NF-κB signaling in epithelial cells. The MV P, V, and C proteins, also involved in preventing host cell interferon responses, were found to individually suppress NF-κB-dependent reporter gene expression in response to activation of the tumor necrosis factor (TNF) receptor, RIG-I-like receptors, or Toll-like receptors. NF-κB activity was most efficiently suppressed in the presence of V, while expression of P or C resulted in moderate inhibition. As indicated by reporter gene assays involving overexpression of the IκB kinase (IKK) complex, which phosphorylates the inhibitor of κB to liberate NF-κB, V protein targets a downstream step in the signaling cascade. Coimmunoprecipitation experiments revealed that V specifically binds to the Rel homology domain of the NF-κB subunit p65 but not of p50. Notably, the short C-terminal domain of the V protein, which is also involved in binding STAT2, IRF7, and MDA5, was sufficient for the interaction and for preventing reporter gene activity. As observed by confocal microscopy, the presence of V abolished nuclear translocation of p65 upon TNF-alpha stimulation. Thus, MV V appears to prevent NF-κB-dependent gene expression by retaining p65 in the cytoplasm. These findings reveal NF-κB as a key target of MV and stress the importance of the V protein as the major viral immune-modulatory factor. |
Used Model | HEK-293T and HEp2 cells |
DOI | 10.1128/JVI.02342-10 |